Ruofan Liang
 (若凡, RF)

  Ph.D. Candidate
  University of Toronto
  ruofan [at] cs.toronto.edu

  CV

About

I am a 4th-year PhD student at the University of Toronto, supervised by Prof. Nandita Vijaykumar. Concurrently, I am also affiliated with the Vector Institute. I am current work as a research intern at Nvidia Toronto AI Lab.

Prior to my Ph.D., I received my Bachelor's degree from the Department of Computer Science, Shanghai Jiao Tong University (SJTU), where I worked with Prof. Quanshi Zhang and Prof. Jingwen Leng. I had a wonderful exchange semester in 2019 with research internship at National University of Singapore, advised by Prof. Bingsheng He.

My current research interests are in computer vision and graphics, particularly in efficient 3D scene learning tasks, neural field representations, and SLAM systems.


Research

Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
Ruofan Liang, Zan Gojcic, Merlin Nimier-David, David Acuna, Nandita Vijaykumar, Sanja Fidler, Zian Wang
ECCV 2024
[Project Page

GaussianObject: Just Taking Four Images to Get A High-Quality 3D Object with Gaussian Splatting
Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian
SIGGRAPH Asia
[Project Page

LGM

DISTWAR: Fast Differentiable Rendering on Raster-based Rendering Pipelines
Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang, Pawan Kumar Sanjaya, Nandita Vijaykumar
Preprint 2023, Under Review
[Github Repo

LGM

ENVIDR: Implicit Differentiable Renderer with Neural Environment Lighting
Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Selvakumar Panneer, Nandita Vijaykumar
ICCV 2023 (Oral)
[Project Page

LGM

SPIDR: SDF-based Neural Point Fields for Illumination and Deformation
Ruofan Liang, Jiahao Zhang, Haoda Li, Chen Yang, Yushi Guan, Nandita Vijaykumar
CVPRW 2023
[Project Page

LGM

CoordX: Accelerating Implicit Neural Representation with a Split MLP Architecture
Ruofan Liang, Hongyi Sun, Nandita Vijaykumar
ICLR 2022
[Paper]  [Slides]  [Code

LGM

Knowledge Consistency between Neural Networks and Beyond
Ruofan Liang*, Tianlin Li*, Longfei Li, Jing Wang, Quanshi Zhang
ICLR 2020 (* equal contribution)
[Paper]  [Code


Previous Projects

LGM

Accel-RF
A general programming framework towards the efficient implementation of neural radiance fields (NeRF) and its variants (e.g., NSVF, VolSDF, NeuS).
JIT compilation + multi-GPU training
Jan, 2022
[Code

LGM

FPGA RAM Mapper
A FPGA CAD tool that maps the logic RAMs required by the circuit to the physical RAMs with circuit area on FPGA as small as possible.
1st place in the competition of Prof. Vaughn Betz's FPGA course (ECE1756).
Nov, 2021
[Code

LGM

Tetris-RL
A RL-based Tetris playing agent. A model-based value iteration algorithm is proposed to make AI to play Tetris with promising performance (1000+ lines per game).
UofT CSC2515 Course Project, Dec, 2020
[Code

LGM

Accel-Video Pipe (AVPipe)
AVPipe is an integrated C++ library for AI video inference tasks on customers' devices, aiming to provide easily-used and high-performance experience.
3rd prize of the excellent bachelor thesis @ SJTU
Jun, 2020
[Code


Miscellaneous

I am a geek always excited to discover something Fun. Now, I am still on my long long way to obtaining knowledge & experience, hoping to exploit my potential.

X

Put on a happy face🙃~



Last updated: Sept, 2023